" "

I have never been able to fix the electrolyte loss symptoms I get on the ketogenic diet (heart palpitations, dry mouth, air hunger) by supplementing with electrolytes. Blogosphere says that is just the transition, but mine seem to only get worse over time. I’ve tried about 2 grams of extra potassium, 800 mg extra magnesium, and 3 grams extra salt (in addition to my already liberally salted foods) spread throughout the day. This did not help. Also does eating salt alone cause you to retain water and therefore retain the rest of the electrolytes without supplementing them?


If you have a functioning pancreas that can produce insulin – i.e. you don’t have type 1 diabetes – it would be extremely hard or, most likely, impossible to get ketoacidosis even if you tried. That’s because high ketone levels result in release of insulin, that shuts down further ketone production. In other words, the body has a safety net that normally makes it impossible for healthy people to get ketoacidosis.
Ketosis is the metabolic process of using fat as the primary source of energy instead of carbohydrates. This means your body is directly breaking down its fat stores as energy instead of slowly converting fat and muscle cells into glucose for energy. You enter ketosis when your body doesn’t have enough glucose (carbohydrates) available. The prime function of the ketogenic diet is to put the body in ketosis.
The nerve impulse is characterised by a great influx of sodium ions through channels in the neuron's cell membrane followed by an efflux of potassium ions through other channels. The neuron is unable to fire again for a short time (known as the refractory period), which is mediated by another potassium channel. The flow through these ion channels is governed by a "gate" which is opened by either a voltage change or a chemical messenger known as a ligand (such as a neurotransmitter). These channels are another target for anticonvulsant drugs.[7]
The DNA test does not necessarily take into account your goals (e.g. breathholding, Ironman, cognition, etc.) and if your goals would benefit from ketosis, then you may want to choose it as a dietary strategy even though it could indeed be true that for FAT LOSS a higher carb intake may suit you. So it all depends on your goals. Or you could just us the supplements like ketones AND eat more carbs and get "best of both worlds".
But sadly, whether due to government subsidy of high carb foods like corn and grain, funding from big companies like Gatorade and Powerbar, our sugar-addicted Western palates, or the constant (unfounded) fear mongering about saturated fats and heart disease, the type of research that shows these fat-burning and performance benefits of carbohydrate restriction simply get shoved under the rug.
A high-fat diet also trains your body to burn even more fat during exercise, even at high intensities. Fat is released faster and in greater amounts from your storage adipose tissue and transported more quickly into your muscles and mitochondria. Your muscles also store more energy as fat and use this fat-based fuel more efficiently and quickly. Even more interestingly, a high-fat diet can cause a shift in the gene expression that codes for specific proteins that increase fat metabolism – and create very similar adaptations to exercise itself. So the mere act of shifting primary fuel intake from carbohydrates to fat begins to make you more “fit”, even if you’re not exercising.

In the US especially, coconut oil and MCT oil manufacturers are legally allowed to claim that lauric acid is an MCT because chemists named it that way, even though it does not act like other true biological MCT oils. If you are relying on plain coconut oil or “MCT-labeled” oil to get enough useful MCTs, think again and check the label: odds are you’re getting very few of the potent, ketogenic shorter chain MCTs (also known as “C8” and “C10”), and instead getting mostly cheaper but ineffective lauric acid.


That was really interesting and useful information. But I wanted to ask you about what Dom said at time (52min). What does he mean,when he says 1 mml increase is about 10% increase of substrate to the brain? Is that (same glucose amount in brain) + (typical ketone amount in brain)+ and 10% more? Or does it substitute glucose? And if it is so, does the brain use that energy or does it just stay around the brain without being used? I know we can’t know for sure, but it would be helpful if you said what you think. Thanks in advance!
The bottom line is that there have not been enough scientific studies, especially longer term ones, to really determine all the potential risks and benefits of the keto diet. Many of the claims out there on the Internet, social media, or television in either direction are anecdotal, meaning that they are individuals telling stories about what has supposedly been their experiences. Take everything you hear that is not supported by scientific evidence with a grain of salt (but not too much salt because too much can be bad for you.)

Humans have always relied on ketones for energy when glucose sources were scarce (i.e. no fruits available during winter). It is a normal state of metabolism. In fact, most babies are born in a state of ketosis. However, with abundant sources of carbohydrate, people rarely access ketosis and it becomes a dormant metabolic pathway.Our ancestors likely had frequent periods of time when high carbohydrate food wasn’t immediately available. For this reason, our bodies are amazing at adapting to burning of ketones for fuel.

After 2 years in ketosis suddenly I find my blood glucose has risen to high levels even while in ketosis. I thought it was the dawn phenomenon, stress hormones like cortisol but now I am beginning to think I am eating too many exongenous keytones like too much MCT oil? I am not taking exogenous keytone supplements but wondering if too much oil/ fat in the diet generates exogenous keytones which inhibits the livers production of endogenous keytones. I have read if the liver is producing endogenous keytones it is not at the same time producing glucose through gluconeogenisis?


The remaining calories in the keto diet come from protein — about 1 gram (g) per kilogram of body weight, so a 140-pound woman would need about 64 g of protein total. As for carbs: “Every body is different, but most people maintain ketosis with between 20 and 50 g of net carbs per day,” says Mattinson. Total carbohydrates minus fiber equals net carbs, she explains.
In terms of weight loss, you may be interested in trying the ketogenic diet because you’ve heard that it can make a big impact right away. And that’s true. “Ketogenic diets will cause you to lose weight within the first week,” says Mattinson. She explains that your body will first use up all of its glycogen stores (the storage form of carbohydrate). With depleted glycogen, you’ll drop water weight. While it can be motivating to see the number on the scale go down (often dramatically), do keep in mind that most of this is water loss initially.

To prove this point, they knew full well they had to have a lower osmolarity than their competition. So, Gaspari spent the money and had their competitors’ products tested at a 3rd party laboratory to see where they stood. With some fine tuning using Osm Technology, Glycofuse is proven to have outstanding osmolality compared to just about every product on the market, including the biggest brands out there.
“For events longer than 60 minutes, consuming 0.7 g carbohydrates·kg-1 body weight·h-1 (approximately 30-60 g·h-1) has been shown unequivocally to extend endurance performance. Consuming carbohydrates during exercise is even more important in situations when athletes have not carbohydrate-loaded, not consumed pre-exercise meals, or restricted energy intake for weight loss. Carbohydrate intake should begin shortly after the onset of activity; [and continue] at 15- to 20-min intervals throughout the activity.”
I see a lot of people say that ketosis is great for insulin sensitivity. BUT, in my experience ketosis causes physiological insulin resistance whereby the muscles and liver are sparing glucose for the brain. Hence, glucose tolerance actually goes down during ketosis. As such, is it possible that post workout carbs could do a lot more damage than they would on a non-ketogenic diet? Or maybe, as Kiefer suggests, glucose uptake post workout is not moderated by insulin at all i.e. muscles soak up glucose regardless of their insulin sensitivity? Or maybe cyclical ketosis doesn’t allow liver glycogen to get low enough to trigger physiological insulin resistance?
If I see a TSH above 2.0 or a trend towards higher values in someone who is testing repeatedly, I get worried – and prefer to see TSH at 0.5-2.0. Of course, this doesn’t mean that you begin to shove carbohydrates indiscriminately down the hatch. However, it means that your high-fat, low-carb diet should include thyroid supporting foods rich in iodine and selenium, such as sea vegetables and brazil nuts, and should also include carbohydrates timed properly, such as before, during or after workouts, when the carbohydrate is more likely to be utilized for energy and less likely to spike blood glucose levels.
There are so many tricks, shortcuts, and gimmicks out there on achieving optimal ketosis – I’d suggest you don’t bother with any of that. Optimal ketosis can be accomplished through dietary nutrition alone (aka just eating food). You shouldn’t need a magic pill to do it. Just stay strict, remain vigilant, and be focused on recording what you eat (to make sure your carb and protein intake are correct).
I'm at 240 now and actually weigh less than I did in high school. Have a decent amount of excess skin that skews my actual weight. Thankfully the government of Canada pays for plastic surgery in my case because it could lead to health problems in the future. Surgery is in about 8 or so months and I'm quite excited to start a completely new chapter of my life once it's done.
Adipose tissue can be used to store fatty acids for regulating temperature and energy.[21] These fatty acids can be released by adipokine signaling of high glucagon and epinephrine levels, which inversely corresponds to low insulin levels. High glucagon and low insulin correspond to times of fasting or to times when blood glucose levels are low.[23] Fatty acids must be metabolized in mitochondria in order to produce energy, but free fatty acids cannot penetrate biological membranes due to their negative electrical charge. So coenzyme A is bound to the fatty acid to produce acyl-CoA, which is able to enter the mitochondria.
Net carbs are what we track when following a ketogenic diet. This calculation is pretty straightforward. Net Carbs = Total Carbs – Fiber. For example, one cup of broccoli has 6g of total carbs and 2.4g of fiber. That would mean one cup of broccoli has 3.6g of net carbs. We count Net Carbs  because dietary fiber does not have a significant metabolic effect. 
In the 1960s, medium-chain triglycerides (MCTs) were found to produce more ketone bodies per unit of energy than normal dietary fats (which are mostly long-chain triglycerides).[15] MCTs are more efficiently absorbed and are rapidly transported to the liver via the hepatic portal system rather than the lymphatic system.[16] The severe carbohydrate restrictions of the classic ketogenic diet made it difficult for parents to produce palatable meals that their children would tolerate. In 1971, Peter Huttenlocher devised a ketogenic diet where about 60% of the calories came from the MCT oil, and this allowed more protein and up to three times as much carbohydrate as the classic ketogenic diet. The oil was mixed with at least twice its volume of skimmed milk, chilled, and sipped during the meal or incorporated into food. He tested it on 12 children and adolescents with intractable seizures. Most children improved in both seizure control and alertness, results that were similar to the classic ketogenic diet. Gastrointestinal upset was a problem, which led one patient to abandon the diet, but meals were easier to prepare and better accepted by the children.[15] The MCT diet replaced the classic ketogenic diet in many hospitals, though some devised diets that were a combination of the two.[10]
It seems strange that a diet that calls for more fat can raise “good” cholesterol and lower “bad” cholesterol, but ketogenic diets are linked to just that. It may be because the lower levels of insulin that result from these diets can stop your body from making more cholesterol. That means you’re less likely to have high blood pressure, hardened arteries, heart failure, and other heart conditions. It's unclear, however; how long these effects last.
Carbohydrates help control blood sugar levels, which are of particular importance for people with diabetes. A study published in May 2018 in the journal Diabetic Medicine shows that while a keto diet may help control HbA1c levels (a two- to three-month average of blood sugar levels), the diet may also cause episodes of hypoglycemia, which is a dangerous drop in blood sugar. Echoing many registered dietitians, the Lincoln, Nebraska–based sports dietitian Angie Asche, RD, says she is “hesitant to recommend a ketogenic diet for individuals with type 1 diabetes.”

I am curious if someone takes any or too much MCT oil (5-10 tablespoons/day) or Exogenous Ketones will the liver slow/stall or shut off endogenous ketone production as you are providing the ketones exogenously and thereby you may NEED to supplement ketones to maintain ketone levels or you may suffer a short term ketone deficit while the liver adjusts to making them on its own again. A parallel I am thinking of is exogenous testosterone supplementation and the hypothalamus/endocrine system slowing/stopping endogenous testosterone production (seen in bodybuilders).
×